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Abstract
Shape interpolation has many applications in computer graphics such as morphing for computer animation. In this paper,
we propose a novel data-driven mesh interpolation method. We adapt patch-based linear rotational invariant coordinates
to effectively represent deformations of models in a shape collection, and utilize this information to guide the synthesis of
interpolated shapes. Unlike previous data-driven approaches, we use a rotation/translation invariant representation which
defines the plausible deformations in a global continuous space. By effectively exploiting the knowledge in the shape space,
our method produces realistic interpolation results at interactive rates, outperforming state-of-the-art methods for challenging
cases. We further propose a novel approach to interactive editing of shape morphing according to the shape distribution. The
user can explore the morphing path and select example models intuitively and adjust the path with simple interactions to edit the
morphing sequences. This provides a useful tool to allow users to generate desired morphing with little effort. We demonstrate
the effectiveness of our approach using various examples.
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1. Introduction

Shape interpolation produces in-between shapes given two (or
more) shapes. It has many applications in computer graphics to
produce new models based on existing ones, and generate smooth
animation sequences between a given pair of models. The latter
is often referred to as morphing. Existing research for shape in-
terpolation and morphing focuses on establishing correspondences
between shapes. Once this is done, interpolation is performed by
either simple linear interpolation of (geometric or other) coordinates
or using more sophisticated (e.g. physically based) models. Even
with well-established correspondence and a suitable deformation
model, realistic shape morphing is still challenging, especially when
the models used for interpolation differ substantially. Using shape
information alone, the essential characteristics of the objects cannot
be captured. Even with physically based interpolation models, it is
still challenging to acquire a detailed and accurate physical model
for the deforming objects and it could also be very time-consuming.
As a result, significantly simplified interpolation models are
typically used, leading to loss of realism. For challenging cases,

existing methods produce interpolated shapes which may not be
practically meaningful: e.g. they may contain self-intersections, or
they do not follow physical laws or the object behaviours (e.g. an
impossible pose for human motion interpolation).

With the proliferation of shape repositories, data-driven ap-
proaches have recently received a lot of attention. By exploiting
the latent knowledge in shape repositories, such methods have
demonstrated effectiveness in various geometry processing ap-
plications. Gao et al. [GLHH13] propose a data-driven mesh
morphing approach which uses locally blended examples from the
model repository as soft constraints to guide the morphing process.
Compared with existing geometry-based methods, this method
produces more realistic results which tend to follow the charac-
teristics and behaviour of the deforming objects, when suitable
example models exist in the repository. While being successful
at addressing certain challenging situations, the method has its
limitations: the use of explicit geometric coordinates is sensitive to
translations and rotations. As a result, the method requires not only
the guiding meshes to have suitable shapes, but also in suitable
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Figure 1: Morphing results of the hand model. First row: non-
data-driven patch-based linear rotation-invariant (LRI) coordinates
[BVGP09], second row: existing data-driven approach [GLHH13],
third row: our data-driven morphing, fourth row: our data-driven
morphing after editing.

global orientations to be useful. Also, as example models are
sparse, the method uses linear blending of geometric coordinates to
produce a continuous representation. However, the representation
can only be applied locally as linear blending does not work well
for large-scale deformations. To address this, the example models
are split into clusters and the plausible shapes are formulated as
a discrete set of linear subspaces, which is quite complicated to
optimize, more likely to converge to suboptimal local minima
and not able to fully utilize the information beyond the local
clusters.

In this paper, we propose a novel data-driven approach to mesh
interpolation and morphing, which addresses the fundamental
limitations of [GLHH13]. We adapt the patch-based linear rotation-
invariant (LRI) coordinates [BVGP09] so that deformations of ex-
ample models are represented in a rotation and translation invariant
way. Example models in the repository are used to form a globally
continuous space that represents plausible deformations. We formu-
late interpolation or morphing as finding a smooth, energy minimiz-
ing path in the plausible deformation space. As we will demonstrate
in the paper, our method produces substantially improved results
over state-of-the-art methods. We further develop techniques to al-
low morphing results to be edited intuitively by users. A challenging
example is shown in Figure 1 where the source (first column) and the
target (last column) shapes differ substantially. Existing non-data-
driven method (first row) produces self-intersections. By exploiting
the knowledge in a collection of hand models, existing data-driven
morphing method [GLHH13] (second row) avoids self-intersections

but still produces distorted fingers which are not realistic. Artefacts
are highlighted in blue squares with additional views making them
more visible. Our proposed approach better utilizes hidden knowl-
edge of plausible deformations and produces realistic results without
such artefacts (third row). The user can also easily edit the morphing
sequence; in this case, the four fingers are now curled into a fist
before extending the two fingers to form a ‘V’ shape (fourth row).

The main contributions of this paper are as follows:

� We propose a novel data-driven mesh interpolation/morphing
method which produces more realistic results than existing meth-
ods, by effectively exploiting the knowledge in example shapes.

� Building on this, we further propose a novel approach to inter-
active morphing editing which produces realistic morphing fol-
lowing user constraints. This tool enables users to create desired
morphing results with little effort.

The remaining sections are organized as follows. We review the
relevant previous work in Section 2. Our data-driven interpolation
technique is described in detail in Section 3, followed by our morph-
ing editing technique in Section 4. We present various experimental
results in Section 5 and finally draw conclusions in Section 6.

2. Related Work

Due to its wide applicability, shape interpolation or morphing has
been intensively researched. For models such as human bodies, one
way of representing various poses is to use skeletons, and poses
can be interpolated using skeleton interpolation, followed by skin-
ning to recover the shape. The problem is easier due to the low
dimensionality; however, such techniques are restricted to surfaces
which can be well represented using skeletons. Our work considers
general surface-based interpolation/morphing. Most relevant work
is reviewed in this section.

Given two (or more) models, the first step for interpolation is to es-
tablish one-to-one correspondence between shapes, often driven by
a sparse set of correspondence points specified by artists [LDSS99,
SP04, HAWG08]. Even with well-established correspondences, re-
alistic shape morphing is not trivial. Direct interpolation of the
vertex positions may cause substantial artefacts, in particular when
the shapes being interpolated have much difference (see Figure 2a).

Geometry-based shape interpolation. Alexa et al. [ACOL00]
generate morphing sequences that are locally as rigid as possible,
by factoring a local affine transform matrix into a rotation matrix
and a symmetric matrix and applying linear interpolation based on
the decomposed matrices. However, the method requires consistent
tetrahedron meshes as input which are generally difficult to obtain.
Huang et al. [HAWG08] use a formulation that minimizes the
overall displacement of vertices and is locally as rigid as possible.
The algorithm takes surface meshes as input; however, the method
is expensive: the number of unknowns scales linearly with the
number of in-between frames and thus typically a very large linear
system needs to be solved.

Geometry-based morphing benefits from coordinates (feature
spaces) that better preserve geometry. Instead of interpolating
mesh vertex positions directly, Laplacian coordinates are used for
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Figure 2: Shape interpolation results. (a) direct interpolation of coordinates, (b) [XZWB06], (c) [FB11], (d) [BVGP09].

shape interpolation [Ale03]. Other work also uses interpolation
of mean Laplacian flow in the dual Laplacian domain [HLW07]
and interpolation of the gradient fields followed by Poisson-based
fusion [XZWB06]. Chu and Lee [CL09] interpolate the shape in
the gradient space of near-rigid components, extracted using multi-
resolution mean shift clustering. The method works particularly
well for pose interpolation.

Alternatively, shape interpolation can be achieved by in-
terpolating edge lengths and dihedral angles of the triangle
meshes [WDAH10, FB11]. Edge lengths and dihedral angles are
invariant to translation and rotation; however, reconstruction of the
interpolated shape from them involves non-linear optimization. To
address this, Winkler et al. [WDAH10] use multi-scale registration
to reconstruct the vertex coordinates hierarchically. Although
largely for shape deformation, Fröhlich and Botsch [FB11]
reconstruct the interpolated shape by an iterative Gauss–Newton
method. These approaches are too slow for interactive applications,
and do not work well for extrapolation which may require edge
lengths to be negative (see Figure 3 for an example).

Rotation-invariant coordinates are particularly suitable for
interpolation/morphing as shapes with different orientations can be
effectively blended. These methods use the idea of connection maps,
representing frames in the local coordinates of their adjacent frames.
Lipman et al. [LSLCO05] propose LRI coordinates which can be
used for interpolation by blending discrete form coefficients. This
approach does not store connection maps explicitly so they need to
be reconstructed first. After this, reconstruction of meshes requires
solving two linear systems, one for reconstructing the absolute
frames from connection maps, and the other for solving vertex
positions. The method is known to be sensitive to noise [BVGP09].
Kircher and Garland [KG08] propose an alternative approach
which stores connection maps explicitly but the connection
maps used are not orthonormal, which may introduce global
shear [BVGP09]. For the purpose of semantic deformation transfer,
Baran et al. [BVGP09] propose rotation-invariant coordinates
which are patch-based and the coordinates record the connection

maps between adjacent patches, as well as mesh faces with their
belonging patches. The coordinates can be effectively blended and
produce more robust results. The patch-based approach also makes
the algorithm more efficient compared with [LSLCO05, KG08]
as the number of patches can be significantly smaller than that of
the mesh elements. Our method is based on this representation;
however, we take a data-driven approach which substantially
improves the results, thanks to the use of shape repositories.

Kilian et al. [KMP07] consider shapes as points on Riemannian
surfaces derived from typical transformations (e.g. isometric), and
formulate plausible morphing as finding a shortest path in the shape
space. Recently, von Tycowicz et al. [vTSSH15] propose an efficient
non-linear shape interpolation technique which achieves real-time
performance even for dense meshes. This method however does
not represent shapes as rotation-invariant coordinates so cannot be
directly used in our data-driven approach.

Physically based shape interpolation. Some research work
improves interpolation realism by utilizing physical models. For
the purpose of realistic simulation, Martin et al. [MTGG11]
combine example-based interpolation with a strain field approach
for improved physical correctness. An elastic deformation energy
is defined in [HRWW12] for interpolating shapes and derived from
the Hession of this energy, a Riemannian metric is introduced
in [HRS*14]. Although these techniques tend to produce more
realistic interpolation, such methods typically need several seconds
for interpolating one shape so are not suitable for interactive
applications. Moreover, the physical models are significantly
simplified and cannot accurately reproduce the behaviour of
complex objects, e.g. human bodies.

Data-driven shape interpolation. Instead of using expensive
physically based modelling, data-driven approaches resort to exist-
ing examples to improve the realism of interpolation. Data-driven
shape deformation has been widely researched [SZGP05, FB11].
However, such techniques cannot be directly used for data-driven in-
terpolation, where a large number of examples are typically needed

Figure 3: Shape extrapolation results. (a) Two shapes to be blended (t = 0 and t = 1), (b) results with t = 0, (c) results with t = −1, (d)
results with t = −2. Middle row: results of [BVGP09], bottom row: results of [FB11].
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Figure 4: Visualization of blended cylinder from −360◦ to 360◦ using dimensionality reduction to 2D. (Left) Result of Poisson shape
interpolation [XZWB06], (right) result of [BVGP09].

Figure 5: Model reconstruction with different numbers of patches.
From left to right: 1000, 2000 and 3000 patches.

to cover the plausible interpolation space. For mesh morphing and
interpolation, Sloan et al. [SRC01] produce new shapes by example
shape interpolation, controlled by an abstract space which needs
to be manually constructed and specified offline. Recently, Hadar

et al. [ACK16] propose a data-driven method for image morphing,
which finds as-smooth-as-possible image sequences by calculating
the shortest paths in the discrete neighbourhood graph. By contrast,
our work deals with 3D mesh morphing and optimizes paths con-
tinuously in the feature space. Gao et al. [GLHH13] propose a data-
driven method that formulates morphing as a shortest path problem
in the local linear subspaces derived from a given example model
database. However, the vertex coordinates are directly used for linear
blending which may cause distortions with large-scale deformation.
Compared with [GLHH13], this work uses rotation-invariant co-
ordinates which handles large-scale deformations well. Instead of
optimizing the morphing sequence discretely defined over a set of
local subspaces, our approach finds the optimized morphing path in
the global continuous space, which not only improves the efficiency
substantially, but also uses the knowledge in the repository better as
it not only interpolates but also extrapolates between example mod-
els. Building on this, we further provide an intuitive interface for
users to visualize the morphing path and edit the path interactively.

Figure 6: Visualization of the morphing paths with varying parameters. (Left) Changing σ to 0.001, 0.01 (default) and 0.1; (middle) changing
γ to 0.001, 0.01 (default) and 0.1; (right) changing λ to 10, 100 (default) and 1000.
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Figure 7: Non-data-driven morphing results. The leftmost and rightmost models are the source and target models, respectively. Top row:
results of [HAWG08]; bottom row: linear interpolation using patch-based LRI [BVGP09].

Figure 8: Data-driven morphing. First row: source model, tran-
sition model and target model; second row: result of [GLHH13];
third row: our data-driven morphing result.

3. Data-Driven Shape Morphing

In this section, we propose a data-driven interpolation/morphing
approach. Given the source shape Ms and the target shape Mt, our
aim is to produce a realistic sequence of in-between shapes that
smoothly transits from the source to the target. We assume that
an example model database is provided. Models in the database
are assumed to have the same topology. This is often satisfied
for existing deformable object repositories and can be achieved
by either fitting a dynamic template to a collection of objects, or
consistent remeshing. If the models in the database are different
from the models to be morphed, a deformation transfer approach
is used [SP04, GLHH13], although these models should have
similar behaviours so that the data-driven approach is meaningful.
We first describe the shape representation used to encode the
deformation of shapes, followed by our data-driven approach to
morphing.

3.1. Shape representation

Given the data set of the models with deformations we adapt
the patch-based LRI representation [BVGP09] to represent the

deformation between different models, as it has the following
advantages: (i) It can handle large deformations well. As shown
in Figure 2, direct interpolation of coordinates (a) and Poisson
shape interpolation [XZWB06] (b) cannot blend shapes with
large relative rotations well. (ii) It copes well with not only
interpolation but also extrapolation (see a comparison with [FB11]
in Figure 3); the latter is particularly important to fully exploit the
hidden knowledge in example shapes. (iii) It is suitable for linear
dimensionality reduction [principal component analysis (PCA)
analysis]. More details are given later. A simple example is shown
in Figure 4 where the cylinder is rotated from −360◦ to 360◦.
The interpolated shapes are nicely distributed over the line after
dimensionality reduction to 2D. The distribution obtained with the
alternative Poisson shape interpolation approach [XZWB06] does
not exhibit such meaningful distribution. As we will show later, this
visualization is essential to allow intuitive morphing editing. (iv)
The representation is also efficient, which is critical for interactive
applications.

For this purpose, a model is chosen as the base model, and given
a deformed model, the deformation can be encoded explicitly as
follows: Given a face f with vertices vfi

(i = 1, 2, 3) and the unit
normal direction nf , the deformation gradient Df for face f can be
obtained as [BVGP09]

Df = [vf2 − vf1 , vf3 − vf1 , nf ][ṽf2 − ṽf1 , ṽf3 − ṽf1 , ñf ]1,

where v/n are vertex positions and normal directions of the de-
formed surface, and ṽ/ñ are those of the base surface. Df can
be further decomposed into the rotation component Rf and scal-
ing/shear component Sf by the polar decomposition: Df = Rf Sf .

In order to reduce the size of the linear systems during
reconstruction and make the representation robust to noise, we
follow [BVGP09] and partition the surface models into a collection
of non-overlapping patches using the method in [WPP07]. Un-
like [BVGP09] which uses a relatively small number of patches (e.g.
dozens), we find using a larger number of patches more suitable
in our settings because to cover the plausible deformation space of
objects, our experiments use much more examples with significant
variations in the training data sets, as we will demonstrate later.
Using a small number of patches may fail to separate major
deforming parts, leading to suboptimal results. Figure 5 compares
the reconstruction results using the SCAPE data set with a varied
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Figure 9: Path optimization using our approach (green) and [RDSK06] (red).

number of patches. Using 1000 patches, the reconstructed model
contains slight but visible distortions (left). Using 2000 patches
(middle) produces very similar results as 3000 patches (right) with
no visible difference, but is much more efficient, so 2000 patches
provide a good balance between efficiency and quality, and are used
in all our experiments. As individual patches are small enough,
deformations will be more local and we do not observe potential
gap artefacts with this setting.

We denote the patch that face f belongs to as p(f ). Let us fur-
ther denote the average rotations of the faces in patch i as Gi . The
patch-based LRI coordinates in [BVGP09] are vectors including
five components: the scaling/shear matrix Sf of each face, the con-
nection map between every pair of adjacent patches, the relative
rotation of each face with respect to its belonging patch, the mean
vertex position of all the vertices and the mean rotation of all the
faces. The last two components make this feature vector rotation
and translation dependent. These components however are used for
global rigid alignment, rather than reconstruction from the coordi-
nates. To ensure rotation/translation invariance, we remove these
two components from the coordinates and introduce an additional
step to interpolate the rigid transforms from source and target pairs.
The coordinates x include the following:

x = [
Sf , log

(
Gi

−1Gj

)
, log

(
Gp(f )

−1Rf

)]
, (1)

for any face f and any pair of adjacent patches i and j , where
log is the matrix logarithm operation to allow rotation to be better
combined, G−1

i Gj is the connection map between adjacent patches
i and j . These components are put together as a feature vector.
Empirically, the values of these components are in a similar scale,
so there is no need to introduce additional weights between these
components.

Given this coordinate, we can reconstruct the shape by solving
two linear systems, the first to reconstruct the rigid rotation of each
face and the second to recover the coordinate of shape vertices.

3.2. Data-driven morphing

Given the example database, we first extract our shape represen-
tation as features for each deformed model. We now consider
examples as samples representing reasonable morphing in the high-
dimensional coordinate space and formulate data-driven morphing
as finding an energy minimizing curve in the coordinate space
connecting the source shape Ms and the target shape Mt. Compared
with previous data-driven work [GLHH13], our work has significant
advantages: Our method can describe the shape distribution more
effectively. As shown in Figures 12, 13 and 14, our method effec-
tively extracts much more useful shape distribution information for
morphing. As a result, there is no need for database upsampling
(i.e. adding additional interpolated models to the database). As
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Figure 10: Our interface for morphing editing.

Table 1: Statistics of the data sets and average running times. The timing
of frame reconstruction is based on a single thread.

Path Frame
optimization reconstruction

Data set No. vertices No. models. (s) (s)

Scape 12 500 71 0.860 0.690
Face 13 637 41 0.902 0.716
Hand 7207 65 0.629 0.683

we will show later, our method runs much faster than [GLHH13]
and can thus allow the user to edit the morphing path interactively.
The use of rotation-invariant coordinates [BVGP09] also helps
parametrize the shape space to a 2D plane for morphing path editing
(see Section 4).

Our problem is similar to finding geodesic paths on 3D point
clouds; the major difference is that a much higher dimension
is being considered, and hence the given plausible shapes pro-
vide a much sparser sampling. We first initialize the path us-
ing Dijkstra’s algorithm on the K nearest neighbour (KNN)
graph, followed by path refinement using iterative quadratic energy
minimization.

3.2.1. Initial morphing path

Discrete shape distribution approximation. We first provide a dis-
crete approximation to the shape distribution representing plausible

shape deformations. We use a simple KNN approach. For every
model, we get the K nearest models in the coordinate space using
the L2 norm. In this paper, except for the lion data set where K = 3
because the data set only contains 10 example models, K = 6 is
used for all the other data-driven morphing examples. We connect
these nearest models to form the KNN graph Ĝ. The obtained KNN
graph Ĝ may have disjoint components. We form a singly con-
nected graph Ḡ by adding additional edges with shortest distances
between connected components in the coordinate space to make the
graph connected, similar to Prim’s algorithm for minimum spanning
trees.

Initial morphing path. Given the source model Ms and target
model Mt, we can use Dijkstra’s algorithm to get the path from
the source model to target model. This provides an initial solution,
which is often quite reasonable. However, the initial path is only
C0 smooth. The corresponding morphing sequence is thus not vi-
sually smooth and the morphing velocity is non-uniform. We can
reparametrize the morphing path based on the total length to get
uniform velocity. In order to get a smooth morphing path along the
shape distribution, we use the following path optimization.

3.2.2. Path optimization

We follow two principles when optimizing the path. The first
principle is that the interpolated path should be located on the
shape distribution (or near the known samples from the shape
distribution). Another principle is that the interpolated path should
be short and smooth. We model these two principles using the

c© 2016 The Authors
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Figure 11: Comparison of dancer morphing results using the data set from [VBMP08]. (a) The result of [XZWB06] (top) and our method
(bottom), (b) visualization of morphing using feature coordinates and dimensionality reduction to 2D. Purple: [XZWB06]; Green: our
data-driven morphing.

following optimization, which is solved iteratively, starting from
the initial morphing path.

Let us denote xk to be the interpolated path after kth iteration.
xk,i is the ith sample position in xk (200 sample points are used in
our experiments). As we only have a sparse sampling of the shape
distribution, we find the k̃ nearest models x̂k,ij from the examples
in the coordinate space (k̃ = 6 in our experiments), and constrain
the coordinates of xk,i to be close to these models, with a weight
decreasing with an increasing distance. To keep the path short and
smooth, the total length and Laplacian operator are used. Overall,
the following energy is minimized:

E(xk) =
∑

i

∑

x̂k,ij ∈Nxk,i

wk,ij‖xk,i − x̂k,ij‖2 + γ
∑

i

d2
k,i

+ λ‖Lk · xk‖2 + δ‖xk − xk−1‖2, (2)

where wk,ij = exp(−||xk−1,i − x̂k,ij ||/σ ) is the weight measuring
the impact of a nearby example x̂k,ij on xk,i . dk,i−1 = ‖xk,i −
xk,i−1‖ is the distance between xk,i and its previous sample xk,i−1.
L is the tridiagonal Laplacian matrix, satisfying Lk(i, i) = 1,
Lk(i, i − 1) = − dk−1,i−1

dk−1,i−1 + dk−1,i
, Lk(i, i + 1) = − dk−1,i

dk−1,i−1 + dk−1,i
. The

first term favours path to be closer to the samples on the shape dis-
tribution. The second and third terms prefer shorter and smoother
paths. The last term specifies that the path should be somewhat close
to the previous iteration, which ensures numerical stability. A small
δ = 0.0001 is used in our experiments.

In each iteration, given the optimal solution of the previous step
(or from the initial morphing path) and after finding the nearest sam-
ple shapes for each sample point, this energy function is quadratic,
and thus can be solved efficiently by solving a linear system. The

iterative optimization terminates when converged (i.e. when the av-
erage position change ‖�xk‖ < ε, ε = 10−3 in our experiments).

Our method is insensitive to the choice of parameters. σ = 0.01,
γ = 0.01 and λ = 100 are used in all of our experiments. Figure 6
shows the results of changing one parameter while keeping others
unchanged. The experimental results are based on the SCAPE data
set and the morphing paths are visualized using PCA (see Section 4
for more details). σ controls the impact of nearby samples. The
resulting path is fairly stable even with a significant change of σ .
Increasing γ and λ tends to produce shorter and smoother paths (at a
cost of slightly more deviation from the examples). Even with sub-
stantial change of parameters (by a factor of 10), the resulting paths
still look plausible. We set these parameters such that they provide
a good balance between smoothness and closeness to examples.

3.2.3. Morphing sequence reconstruction

After obtaining the optimized path in the feature coordinate space,
we can generate a sequence of morphing shapes. We first resample
the path with a specified number of samples and by default
with even spacing between samples. This produces time-uniform
morphing results. Alternatively, samples could be distributed
along the time in a non-uniform manner if this is preferred.
Given a sample x̃, the interpolated shape S̃ in the morphing
sequence can be reconstructed from the corresponding feature
coordinates [BVGP09]. Since the coordinates are rotation and
translation invariant, the reconstructed shape does not come with
consistent orientation information. We further interpolate a rigid
transform for each interpolated shape. We obtain rigid transforms
Ts and Tt from the interpolated shape S̃ to the source model Ms and
target model Mt, respectively. As correspondences are known, the
rigid transforms can be obtained explicitly using a small number of
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Figure 12: Morphing results using the handstand data set from [VBMP08]. First row: [HAWG08], second row: existing data-driven morphing
[GLHH13], third row: our data-driven morphing.

correspondences. The rigid transforms are then decomposed into
the rotation and translation components, with rotations interpolated
using quaternion interpolation and translations interpolated using
linear interpolation based on the time. The interpolated transform
T̃ is applied to S̃ to obtain a globally aligned interpolated shape.

We demonstrate our data-driven morphing using a challenging
synthetic example. As shown in Figures 7 and 8, the source
and the target models are springs but rotated along opposite
directions (as indicated by the texture). Using non data-driven
methods, including [HAWG08] and linear interpolation of
patch-based LRI [BVGP09], self-intersections occur due to the
substantial change from the source to the target (Figure 7). For
data-driven morphing with a cylinder (pointing inwards) as a
reference model for guidance, the deformation is still signifi-
cant, and the previous data-driven method [GLHH13] does not
work well. Our data-driven method produces reasonable output
(Figure 8).

3.2.4. Comparison with approximating geodesic paths

Ruggeri et al. [RDSK06] propose an approximating geodesic path
algorithm for point sets. Their approach uses an energy formulation
with similar terms to ours, including closeness to samples, and the
path length. However, our approach is different in that instead of
using one nearest neighbour for each sample on the path, we use

multiple samples in the neighbouring space. We further include
a Laplacian term for smoothness and use an iterative approach to
incrementally refine the curves. While their method is effective for
point sets with good distribution, as shown in Figure 9, when the
points are unevenly distributed, the path produced by their method is
less smooth than ours, and our path tends to pass nearby areas with
sufficient number of samples rather than passing through samples
directly.

As the underlying surface is analytical, we further perform
quantitative comparison. The geodesic path can be obtained
exactly and used as ground truth. Following [RDSK06], we use
egeod (g∗) = |g∗ − ga |/ga to measure the normalized difference
between the length of a given path g∗ and the length of the ground
truth geodesic path ga . Our approach has egeod = 0.27%
whereas for [RDSK06], egeod = 4.5%. This shows that
our path is significantly shorter than that of [RDSK06].
epath(P ∗) = max(dpath(P ∗, Pa), dpath(Pa, P

∗))/ga is another mea-
sure, where P ∗ is a given path, Pa is the ground truth path and
dpath(P1, P2) measures the average distance from points on the path
P1 to path P2. epath(P ∗) measures how close points on P ∗ are to the
ground truth path Pa on average. epath = 1.75% for our method,
which is smaller than 1.85% for [RDSK06].

As the coordinate space is of high dimensionality, and hence
inevitably has a sparse sampling of examples, our method is thus
more suitable.

c© 2016 The Authors
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Figure 13: Morphing results using the jumping data set from [VBMP08]. First row: patched based LRI [BVGP09], second row: existing
data-driven approach [GLHH13], third row: our data-driven morphing.

4. Interactive Morphing Editing

By using a data-driven approach, our method automatically
generates a smooth morphing sequence given a pair of source and
target models at interactive rates. However, in practice, although
the obtained path looks generally realistic, it may not be what
the user expects. Instead of generating an entirely new morphing
sequence, it would be much more efficient to enable the user to edit
or adjust the morphing sequence to satisfy their needs. Building on
our efficient data-driven morphing, we further develop a novel tool
for interactive data-driven morphing editing.

Figure 10 shows our interface for morphing editing. The user
is able to see the current morphing result (in the top left pane).
Moreover, we visualize the examples in the coordinate space by
dimensionality reduction using PCA to two dimensions. Note that
this transformation is used to map example shapes, as well as newly
interpolated shapes to the 2D space for visualization. Standard
non-linear mappings such as Multi-Dimensional Scaling can be
used for effective dimensionality reduction and visualization of
example shapes, and may better depict the relationships between
them. However, when new shapes are added, pairwise distances
need to be recalculated, which is too slow for interactive editing, and
can also cause confusion as the positions of example shapes change
after each interaction. A possible alternative is to use out-of-sample
extension [BPV03] to embed newly interpolated shapes without

recalculating the mapping. However, it is only approximate and
can be sensitive to the distribution of the original data.

In the bottom right pane, each blue point represents an example,
and the green and red curves represent morphing paths before and
after editing. The morphing sequence is also visualized in the left
pane as a sequence of models for easier selection. The user is free
to choose a model on the current path. Once a model is selected,
the four nearest examples are shown (in orange) around the selected
model. These four models are also selectable and the selected model
will be shown in the top right pane for exploration. If the user
believes one of them is in the direction of their intended editing,
the user can choose one of them, and it is incorporated into the
energy formulation (Equation 3.2.2) as a hard constraint. The data-
driven morphing algorithm is applied to generate a new morphing
sequence. If the user is not yet satisfied with the new result, further
editing can be incrementally applied.

5. Results

Our experiments were carried out on a computer with an Intel
Xeon E5-2620 CPU with 8 GB memory and sped up in parallel
by OpenMP. We used various data sets from the existing research,
including SCAPE [ASK*05], face [ZSCS04], dancer, lion [SP04],
handstand, jumping [VBMP08] and a shape collection containing
23 face scans and 65 hand models (see the Supporting Informa-

c© 2016 The Authors
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Figure 14: Morphing results using the SCAPE data set from [ASK*05]. Top row: existing data-driven approach [GLHH13], bottom row: our
data-driven morphing.

tion for a list of shapes). Running times for typical examples are
shown in Table 1. Our method is interactive, even with a reasonably
large number of example models. After a one-off path optimization
which takes under a second, it takes less than a second to reconstruct
a frame, whereas [GLHH13] takes 25.45 s for path optimization for
the hand example (Figure 1) and several seconds to reconstruct a
frame. Note that the timing for frame reconstruction is based on a
single thread, and in practice as each frame can be reconstructed in-
dependently, we use multi-threading so that the morphing sequence
can be generated within a couple of seconds, which makes interac-
tive editing feasible.

We now show various morphing results and compare our method
with state of the art (either non-data-driven or data-driven). For these
results, the leftmost and rightmost shapes are the source and target
models and several in-between models from the animation sequence
are shown in the paper; please refer to the Supporting Information
video for the morphing animations. For our method, we use the first
model in each data set as reference. While different reference models
may lead to somewhat different morphing results, our approach
is robust to the choice of reference models: similar and plausible
morphing results are obtained with different reference models.

Figure 11(a) shows an example of a dancer morphing us-
ing the data set from [VBMP08]. Geometry-based methods
such as [XZWB06] produce a smooth transition but have self-
intersections in space. Our data-driven method produces a smooth
and artefact-free result. To better understand how these methods
compare, we use PCA to visualize the example models and morph-
ing paths by projecting them to the first two principal dimensions
(Figure 11 b). The geometry-based method (purple) is shorter but
out of the shape distribution. Our method (green) produces a smooth
path that nicely follows the shape distribution.

Figures 12 and 13 show two examples of human morphing.
For the handstand example, significant deformation exists and the

existing geometry-based method produces a very rigid result which
cannot be performed by a human and thus does not look realistic.
The existing data-driven method [GLHH13] produces a slightly
better result. However, because discrete subspaces are used, their
method fails to find good reference models. Our method produces a
realistic morphing result. For the jumping example, existing meth-
ods produce self-intersections (although less artefacts exist on the
result of [GLHH13]). Our method manages to find a smooth path fol-
lowing the shape distribution, thus avoids the artefacts. Our method
also produces more time-uniform animation than [GLHH13]; see
the supplementary video. Figure 14 gives the morphing results
of a human using the SCAPE data set. The existing data-driven
method [GLHH13] fails to find useful references, producing smooth
morphing but involves unbalanced poses which are not humanly
possible. Our data-driven method produces natural morphing
result.

Similar to [GLHH13], our method assumes an example model
database is provided. To apply to models which are different from
those in the database but has similar behaviour, deformation trans-
fer [SP04, GLHH13] is used. An example is shown in Figure 15.
Geometry based method [HAWG08] produces self-intersection
and the existing data-driven approach [GLHH13] generates a
rather twisted tail (see the region highlighted in the blue squares).
Our data-driven method produces more realistic results for lion
morphing. By using deformation transfer, morphing results are
transferred to a cat model (bottom row).

Figures 16 and 17 show two examples of our data-driven
morphing editing. For each example, only two reference models
are interactively selected, and the resulting morphing sequences
are both realistic and much richer: the face example introduces
additional eye blinking and the hand example produces mul-
tiple finger actions. The morphing is solved as a whole, so
the smoothness is not compromised even with introduced user
constraints.

c© 2016 The Authors
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Figure 15: Morphing results of a lion using the data set from [VBMP08]. First row: [HAWG08], second row: existing data-driven
approach [GLHH13], third row: our data-driven morphing, fourth row: our data-driven morphing result transferred to a cat.

Figure 16: Data-driven morphing editing of the face data set. Top
row: before editing, bottom row: after editing.

Figure 17: Data-driven morphing editing of the hand data set. Top
row: before editing, bottom row: after editing.

6. Conclusion

In this paper, we propose a novel data-driven approach to realis-
tic shape morphing by exploiting knowledge in the example mod-
els. Significantly better results than state-of-the-art methods are ob-
tained. We further propose a novel interactive data-driven morphing

editing technique which allows users to produce desired morphing
with little effort.

As a data-driven approach, our method may not work well if
the example database does not sufficiently cover the plausible
deformation space. Compared with the existing data-driven ap-
proach [GLHH13], we have demonstrated that given the same ex-
ample shape repository, our approach better utilizes the knowledge
hidden in the shape repository and can often produce better results.
It is still an open question to further exploit the information in the
shape repository to produce realistic morphing with fewer example
models.

Our current implementation is purely CPU-based which achieves
interactive performance. The method could be further sped up by
GPU acceleration, potentially providing a more responsive, possibly
real-time user interaction. We would like to investigate this in the
future.
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Mesh-based inverse kinematics. ACM Transactions on Graphics
24, 3 (2005), 488–495.

[VBMP08] VLASIC D., BARAN I., MATUSIK W., POPOVIĆ J.: Articulated
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